VEP: A Two-stage Verification Toolchain for Full eBPF Programmability

Xiwei Wu!, Yueyang Feng*!, Tianyi Huang*!, Xiaoyang Lu*!, Shengkai Lin', Lihan Xie',
Shizhen Zhao'!, Qinxiang Cao'!

'Shanghai Jiao Tong University

Abstract

Extended Berkely Package Filter (eBPF) is a revolu-
tionary technology that can safely and efficiently ex-
tend kernel capabilities. It has been widely used in net-
working, tracing, security, and more. However, existing
eBPF verifiers impose strict constraints, often requiring
repeated modifications to eBPF programs to pass verifica-
tion. To enhance programmability, we introduce VEP, an
annotation-guided eBPF program verification toolchain.
VEP consists of three components: VEP-C, a verifier for
annotated eBPF-C programs; VEP-compiler, a compiler
targeting annotated eBPF bytecode; and VEP-eBPF, a
lightweight bytecode-level proof checker. VEP allows
users to verify the correctness of their programs with ap-
propriate annotations, thus enabling full programmability.
Our experimental results demonstrate that VEP addresses
the limitations of existing verifiers, i.e. the Linux verifier
and PREVAIL, and provides a more flexible and auto-
mated approach to kernel security.

1 Introduction

Recently, eBPF [15] has gained significant popularity as
a versatile technique. This innovative technology enables
users to load programs into the Linux kernel dynami-
cally, proving to be highly advantageous across various
domains, including networking [2, 6,29, 34,46,49],trac-
ing [4,43], security [3,23,47], storage [7,51,52], and
more. In contrast to traditional Linux kernel modules,
eBPF programs offer enhanced stability, as each program
undergoes a rigorous verification process before attach-
ment to the kernel. This verifier meticulously screens
programs for unsafe behaviors, such as infinite loops and

*These authors contributed equally to this work.
Corresponding authors.

out-of-bound memory access, thus preventing potential
crashes.

Existing eBPF verifiers (e.g., the Linux verifier [19]
and PREVAIL [26]) often compromise programmability
for security, sometimes rejecting safe eBPF programs.
The Linux verifier [19] uses register value tracking to
simulate the execution paths but limits programmabil-
ity by imposing constraints such as maximum program
size and loop complexity to prevent path explosion. PRE-
VAIL [26] addresses this issue using abstract interpre-
tation to merge paths, allowing variable-sized loops in
eBPF programs. However, when loops involve complex,
dynamic behaviors—such as termination conditions de-
pendent on runtime data—PREVAIL’s analysis could
become imprecise, leading to safe programs being incor-
rectly rejected.

The eBPF maintainers have acknowledged this issue
and have developed methods to mitigate these restric-
tions on program size and loop complexity. Since kernel
version 3.18, the Linux verifier has employed pruning to
eliminate redundant code paths [18, 19]. Kernel version
5.2 raised the instruction limit from 4096 to 1 million,
and version 5.3 added support for bounded loops [16].
In version 5.13, map iterators were introduced to allow
iteration through map elements [17], as loops are always
unrolled by the verifier, which can lead to excessive code
lengths when iterating over large maps. However, map
iterators require a function pointer, which, while suited
for functional languages, is cumbersome in C. Despite
all these ad-hoc features, some safe programs remain
impossible to pass the Linux verifier.

State-of-the-art verification tools have the potential
to achieve full programmability. We broadly catego-
rize modern verification tools into three types based on
their design approaches when dealing with intricate al-
gorithms, complex program properties, and the need for

high levels of automation: (1) Fully automatic verifiers.
CBMC [12], a bounded model checker, verifies array
bounds, pointer safety, and other properties in C programs
by unrolling loops a fixed number of times. Infer [10],
a static analysis tool developed by Meta, automatically
checks memory safety in mobile and server-side code.
These tools can automatically handle millions of lines of
source codes. But their users have to tolerate false posi-
tives and negatives, especially when verifying complex
programs with intricate algorithms and data structures.
(2) Verifiers based on interactive theorem provers. This
method can verify complex programs, but it requires sig-
nificant manual effort in developing machine-checkable
proof code. VST [24], as a representative of this type
of tools, verifies properties of programs in the theorem
prover Coq [48] by requiring users to describe the desired
properties and manually write proof code to complete the
proof. This approach lacks automation, and the time and
memory consumption can be significant '. (3) Annota-
tion verifiers based on SMT solver. This approach relies
heavily on the SMT solver. VeriFast [31] allows users
to provide assertions within the program that describe
relevant properties, which are then evaluated by the SMT
solver for correctness. Similarly, Dafny [33] leverages
the Z3 [8] SMT solver to automate the verification of
annotated programs. Unfortunately, even powerful and
industry-standard SMT solvers such as Z3 and cvc5 [5]
still encounter numerous unsolvable or incorrectly solved
problems. Moreover, these SMT solvers are often of con-
siderable scale, requiring substantial amounts of time and
memory. In short, it is possible for verification tools to
verify complex programs without posing any limitation
(i.e. achieve full programmability) but with an additional
cost such as requiring users to write annotations. Mean-
while, the tools must make trade-offs among efficiency,
resource consumption, and potential false negatives and
false positives (see Table 1).

For eBPF verification, the verifier must operate within
the kernel, necessitating high efficiency, minimal re-
source usage, and the absence of false negatives. These
requirements imply several constraints: First, despite the
advanced capabilities of modern SMT solvers, their over-
head and risk of false results make them unsuitable for
kernel verification. Second, most eBPF programs are
compiled with unverified compilers such as LLVM or
GCC. We aim to minimize our Trusted Computing Base
(TCB), avoiding including such monolithic components.

I'The resource requirements of theorem-prover-based tools, such as
VST, vary with implementation. Tools built entirely on theorem provers
such as Coq and Isabelle [40] tend to have high time and memory
demands, while implementations in languages such as C or Python
such as VST-A [53] can greatly reduce these costs.

Finally, verification tools must be highly automated and
user-friendly to encourage widespread adoption by eBPF
developers in practical settings.

Inspired by these considerations, we propose
verification toolchain for eBPF programs (VEP) based
on an annotation-guided verification approach. The VEP
toolchain comprises a C-level verifier, an annotation-
aware compiler, and a bytecode-level proof checker. First,
verification is conducted on the annotated C programs.
To ensure they are free of undefined behavior(UB) per
the C standard and only use limited resources. This
phase also generates additional annotations and proof
terms for later bytecode-level verification. Next, the
verified C program is transformed into an annotated
bytecode program by an annotation-aware compiler.
In this step, the code, the annotations, and the proof
terms are all converted to the bytecode level. Finally, a
bytecode proof checker re-evaluates the proofs and the
annotated bytecode to ensure compliance with eBPF
standards, thereby completing the verification process.
Our two-stage verification framework distributes
substantial time and memory overhead to user space,
while the kernel space contains only a proof checker
with minimal time and space requirements.

In summary, we have developed a verification tool
VEP for annotated eBPF programs, which offers the fol-
lowing advantages:

1. VEP achieves full programmability for eBPF pro-
grams, going beyond memory safety to verify the
functional correctness of eBPF programs.

2. In user space, the verifier is highly automatic.

3. In kernel space, the proof checker is secure and
efficient with lower time and memory consumption.

4. Our TCB is small, which includes only the proof
checker in kernel space, excluding the C verifier and
the compiler.

The structure of this paper is as follows: In Section 2,
we describe the design of VEP, including the general
framework and underlying design principles. In partic-
ular, we explain the design necessity of the two-stage
verification scheme. In Section 3, 4 and 5, we introduce
the detailed design of the three components of VEP re-
spectively. In Section 6, we show our experiments and
the performance of the proposed method. Section 7 and
8 introduce our future works and make a conclusion.

2 Opverall Architecture of VEP

In this section, we will introduce the overall design of
VEP and discuss the design choices of the two-stage

Tool Full Programability | Automation | Small TCB | Low Time/Memory Cost
CBMC/Infer - +++ --- +++
VST + -- +++ depend on implementation
VeriFast + + --- +

Table 1: Comparison of different verification tools.

verification framework.

2.1 Two-stage Verification

We have developed the verification tool VEP for an-
notated programs to achieve full programmability, en-
abling users to write any safe and valid program. Specifi-
cally, the VEP toolchain verifies whether an eBPF pro-
gram (1) is free from aborting behaviors such as null-
pointer dereferences and division by zero and (2) adheres
to strict memory safety properties, including program-
owned memory (e.g., stack, eBPF maps) and kernel-
owned memory (e.g., pointers passed via helper functions
or context structures).

VEP begins with a C-level verifier, VEP-C, which per-
forms initial checks on user-annotated C programs. De-
velopers can iteratively refine their code using VEP-C
until it passes verification. In this process, VEP-C applies
symbolic execution to compute the strongest postcondi-
tion for each program statement and leverages an SMT
solver to derive assertions and generate corresponding
proofs automatically. Here, postconditions define the con-
ditions that must hold after executing a program segment,
while preconditions specify the assumptions made be-
fore execution begins. Symbolic execution systematically
computes the strongest postcondition based on the given
preconditions, ensuring that the program adheres to its
safety and resource constraints.

/*@ 0 < x < 100 */
x=x+1;
/*¥@ 0 < x < 100 */

In this example, the precondition is P = 0 < x < 100,
and the postcondition to be checked is Q = 0 < x < 100.
We need to verify whether, after executing ¢ £x=x+1 un-
der the condition P, the postcondition Q holds. The first
step is to compute the strongest postcondition; that is, the
best we can tell about the program state after executing ¢
given the initial condition P. In this case, the strongest
postcondition is dxg,x = xo + 1 A 0 < x9 < 100, where in-
tuitively xq represents the value of x before the increment
operation. During symbolic execution, such computation
of strongest postconditions has its logic foundation in

Hoare logic rules [28,41]. The time complexity of the
strongest postcondition computation is approximately
linear with assertion length. So in general, the time com-
plexity of symbolic execution is approximately linear
with the product of the program length and the average
assertion length.

Next, we use an SMT solver to determine whether
dxp,x =x0+ 1 A 0 <xp < 100 implies 0 < x < 100. Al-
though this example is simple, determining the validity
of assertion derivations can be complex in practice. In
fact, the decision problem is undecidable in general. For-
tunately, existing research on SMT solvers has shown
that modern solvers can produce correct results in many
practical cases. VEP’s built-in SMT solver is required
not only to verify whether the derivations hold but also
to provide (cvc5-style) proofs. Each proof consists of a
list of proof steps. Every proof step derives a new con-
clusion from known propositions (including assumptions
and conclusions proved earlier). Formally, a proof step
contains one proof rule name, the associated parameters
t;, the premises @;, the resulting conclusion V, and its
side condition C.

QL Q| 1yt
v

RULENAME : if C

In the example of (Ixp,x = xp+ 1 A 0 < xp < 100) =
0 < x < 100, the VEP’s built-in SMT solver produces a
‘YES’ with a 138-line proof. It means that the code has
been successfully verified by VEP-C, with both the cor-
responding proof and strongest postcondition generated.

Computed strongest postconditions and SMT-
generated proofs are inserted back into the original
annotated program. The annotation-aware compiler
(VEP-compiler) then compiles the elaborated C program
into annotated eBPF bytecode. Unlike traditional
compilers, relevant assertions and proofs will also
undergo corresponding compilation passes.

Finally, VEP uses a bytecode-level proof checker
(VEP-eBPF) to perform a final verification. VEP-
eBPF similarly uses symbolic execution to compute
the strongest postcondition for each statement and then
checks the corresponding proofs to derive the assertions,
but without requiring SMT solvers: it only checks the
proofs based on basic logic rules, using a minimal proof

checker. If the verification passes, the user-written pro-
gram has successfully undergone VEP’s verification pro-
cess. In the end, the eBPF program will be loaded in the
kernel, and its execution is guaranteed to be safe. This
security assurance is achieved solely by verifying that
the programs and proofs checked by VEP-eBPF are con-
sistent. Therefore, the entire TCB of VEP is effectively
reduced to the lightweight proof checker, VEP-eBPF.

User space

D | Annotated C program C Verif
eveloper eririer

Verified C program

‘ Annotation Aware Compiler ‘

Annotated

Kernel space bytecode

A 4

Pass .
Linux Kernel

‘ Bytecode Proof Checker

Figure 1: The framework of VEP.

All components of VEP were developed independently,
without relying on existing tools. We aim for VEP to re-
place the current eBPF verification mechanism in Linux.
Figure 1 shows the whole workflow of VEP. Our two-
stage verification addressed the three requirements men-
tioned in Section 1.

¢ Small and Efficient Kernel Integration.
Our two-stage verification process takes advantage
of this by offloading complex SMT solver calls to
VEP-C in user space while keeping a lightweight
proof checker, VEP-eBPF, in kernel space. VEP-
eBPF performs only straightforward logical deduc-
tions without complex SMT operations, ensuring
the kernel component remains simple and efficient.

¢ Minimal Final Trusted Computing Base (TCB).
The safety of loading eBPF programs depends
solely on the correct implementation of VEP-eBPF.
By isolating the critical verification logic in this
small component, we minimize the TCB, thereby
reducing risks associated with complex verification
algorithms and enhancing overall reliability.

* Highly Automated and User-Friendly.
While users must provide assertions to prove pro-
gram safety, our approach leverages lessons from

tools like VeriFast and VST by offering an annota-
tion syntax that closely resembles C. This familiar
syntax reduces the learning curve, making it easier
for users to write and understand assertions.

2.2 Verification Capabilities

VEP is designed to verify critical properties of eBPF
programs, ensuring they adhere to both safety and cor-
rectness guarantees. Here, safety refers to kernel safety,
while correctness pertains to functional correctness ver-
ification—the assurance that program implementations
precisely match their specified behaviors.

Safety Guarantees: Under the classification framework
of KFlex [14], kernel safety consists of two core compo-
nents: kernel-interface compliance and extension correct-
ness. Since eBPF programs extend kernel functionality,
extension correctness ensures safe memory accesses and
guarantees program termination. Additionally, as eBPF
programs often invoke kernel functions to perform spe-
cific tasks, kernel-interface compliance is equally critical.
This requires that all kernel function calls are valid and
that any resources acquired through these calls are prop-
erly released, preventing resource leaks.

VEP not only ensures extension correctness but also
enforces kernel-interface compliance. VEP features an
annotation language that enables users to formally spec-
ify program properties for verifying the following critical
properties:

1. Enforcing memory access permissions for load/s-

tore operations and function calls.

2. Guaranteeing that all programs terminate within a
finite number of steps.

3. Ensuring proper acquire-release ordering disci-
pline for synchronization primitives (e.g., locks and
semaphores).

4. Preventing resource leaks through comprehensive
lifecycle tracking.

Correctness Guarantees: While the annotation require-
ments for functional correctness verification are indeed
significantly more complex than those for safety veri-
fication, our annotation language has been specifically
designed to facilitate the precise description of these
complex properties. Since functional correctness verifica-
tion fundamentally builds upon the foundation of safety
verification, VEP enforces the requirement that all user-
provided annotations must satisfy the four fundamental
properties of safety guarantees. This ensures that verified
programs maintain both safety guarantees and correct-
ness guarantees throughout the verification process.

2.3 Discussion

In short, we believe an eBPF verifier should be power-
ful enough to reject unsafe programs and accept correct
complex programs, and still be simple enough to be built
in the kernel.

Why not use only the C verifier? In a single-phase C
verification approach, users need to place a high level of
trust in not only the C verifier but also the compiler. But
even widely-used compilers such as GCC and LLVM con-
tinue to receive numerous bug reports daily. For instance,
the LLVM bug tracker has numerous reports of bugs af-
fecting various components of the compiler [22,50], such
as the front end, the optimizer, and the code generator.
These reports illustrate the necessity for users to trust the
compiler while being aware of potential issues. Instead,
we have a trustworthy bytecode verifier to ensure the
final validation before loading, which is our only TCB.

Why not use only the bytecode verifier? Most impor-
tantly, if there is only one bytecode verifier, then it needs
a strong SMT solver, which contradicts the simplicity
goal of the whole verifier discussed above.

Second, the C verifier provides better computer-human
interaction. An optimizing compiler may dramatically
change the structure of a C program, making it impossible
to convert verification results at the bytecode level back to
the source level. If we only report failures at the bytecode
level, users must understand how the whole toolchain
works only to debug their code. Instead, the C verifier
can directly generate C-level feedback, which is more
understandable for developers.

A further reason is that writing an annotated byte-
code program directly is challenging. Bytecode is very
hard to comprehend, and thus it is even more difficult to
write suitable assertions for it. Therefore, VEP provides a
transformation from C assertions to bytecode assertions
through an annotation-aware compiler, which enables
users to write more readable assertions based on C code.

Unsafe C programs may be compiled to a safe byte-
code program. Can such programs pass VEP? As
the compiler is a black box for eBPF developers, we be-
lieve VEP should reject undefined behavior (UB) in C at
the C verification level. For example, Figure 2 shows an
unsafe eBPF program. Due to the insufficient space (size
of 20) in buffer to store the information of comm, the
Linux verifier rejects the function. However, a C program
(shown in Figure 3) has out-of-bound array access. After
being compiled into bytecode, that access may be a valid

1 int badhelpercall()
2 char buffer([1];
3 return bpf_get_current_comm(buffer, 20); }

Figure 2: Bad helper call A from PREVAIL benchmark.

1 int badhelpercall()

2 char buffer[1l];

3 char buffer2[20];

4 return bpf_get_current_comm(buffer, 20); }

Figure 3: Bad helper call B from PREVAIL benchmark.

albeit unintended location, say, buffer2. The C standard
does not require buffer2 to be placed right after buffer.
Compilers could choose to swap them for optimization.
Advanced compilers may even detect this undefined be-
havior (UB) and aggressively exploit this fact by elimi-
nating the whole C function. This program is accepted
by version 5.10 of the Linux Kernel but is rejected by
version 5.15. We believe that these programs need to be
rejected as early as possible. VEP-C will reject all such
programs at the C level. Even if such a program were
to bypass VEP-C, VEP-eBPF would still reject it dur-
ing bytecode verification due to the absence of required
proofs generated from the C-level assertions.

How much additional efforts are needed for writing
annotations? Typically, annotation-based verification
tools require users to provide at least function specifica-
tions and loop invariants. For complex assertion deriva-
tions, users might also need to supply additional asser-
tions to elaborate on the derivation steps. VEP offers
some automation support for generating specifications
and loop invariants, and we have found that, with this
basic support, users can often complete program verifi-
cation without any additional annotations. However, for
complex programs, manual input is still required, partic-
ularly for verifying functional correctness.

If one manually modifies the generated annotated
bytecode, is it possible to trick the VEP-eBPF checker
and break the safety guarantee? Simply put: no. It is
like you cannot modify the proof of 0 = 0 to prove 0 = 1.

In scenarios where a user modifies the annotated byte-
code and/or its corresponding proofs, VEP-eBPF still
meticulously verifies the alignment between them. If the
modifications result in a correct match, meaning that the
proof still validates the safety and correctness of the al-
tered bytecode, VEP-eBPF will permit the bytecode to
be loaded into the kernel. This ensures that even after
modifications, as long as the integrity of the proofs is

maintained, the program remains secure and is consid-
ered safe for kernel execution.

Conversely, if a user alters the annotated bytecode and
introduces incorrect or inconsistent proofs, VEP-eBPF
will detect these discrepancies during the verification
process. The proof checker is designed to ensure that
only bytecode with valid, accurate proofs can be ex-
ecuted within the kernel. When erroneous proofs are
encountered—those that fail to substantiate the safety or
correctness of the bytecode—VEP-eBPF will reject the
bytecode, preventing it from being loaded into the kernel.

How can we make sure that the pre/postconditions
correctly describe the properties that we care? Re-
garding whether the modified code functions as the user
intends, additional proofs related to functional correct-
ness can be provided by the user to ensure this aspect.
VEP-eBPF’s primary focus is to guarantee that any code
it approves is safe to execute. However, the tool will not
automatically verify that the modified code behaves as
desired; it will only ensure that the code can be safely run
without introducing security vulnerabilities. Therefore, it
is up to the user to include further assertions and proofs
to confirm that the program’s functionality aligns with
their expectations.

2.4 Related Work

To the best of our knowledge, VEP is the first annotation-
guided eBPF verification toolchain. In theory, for any
correct eBPF program written by programmers, there
exists a way to add annotations to pass VEP.

Most existing eBPF verifiers, including the Linux veri-
fier [19], PREVAIL [26], etc., are automatic verifiers. Ad-
mittedly, automatic verifiers are easy to use. But in theory,
checking whether an eBPF program can be safely exe-
cuted and terminated is an undecidable problem. Indeed,
both the Linux verifier and PREVAIL encounter prob-
lems when handling loops with complex data structures
and may generate false positive results for certain eBPF
programs, which limits eBPF programs from achieving
full programmability.

We have identified ExoBPF [38] and Serval [37],
which necessitate users to add specifications at the byte-
code level. These tools conduct symbolic execution uti-
lizing theorem provers and subsequently employ an SMT
solver to resolve constraints. Specifically, ExoBPF uti-
lizes Lean, while Serval leverages Rosette. Although
these tools are indeed powerful, they require users to
be familiar with eBPF bytecode and theorem provers to
effectively write bytecode specifications.

Previous research in annotation-based verification has
laid important theoretical foundations. Necula estab-
lished a proof-carrying code (PCC) framework where
code producers generate safety proofs that can be effi-
ciently verified by the code consumer [35, 36]. While
these PCC concepts have inspired later verification sys-
tems, existing annotation-based tools like Vale [9] and
Ironclad Apps [27] demonstrate limitations when adapted
for eBPF verification. Vale leverages Dafny’s Z3-based
verification to analyze annotated assembly code for cryp-
tographic implementations, while Ironclad Apps stream-
lined Z3’s capabilities for OS-level verification. Though
effective for assembly code verification in specific do-
mains, these approaches impose substantial learning over-
head for eBPF developers who must reason about low-
level memory semantics and instruction sets. Our method-
ology builds upon PCC’s foundational principles but
shifts the verification abstraction layer - rather than re-
quiring assembly-level annotations or specialized proof
generators, we enable developers to annotate directly at
the C source level. This creates an end-to-end verifica-
tion chain from high-level semantics to eBPF bytecode,
crucially mediated by a lightweight verification engine
optimized for kernel integration.

3 Detailed Design of VEP-C

VEP-C is an annotation-based verifier for annotated C
programs, implemented based on traditional symbolic ex-
ecution algorithm with an entailment solver to check the
validity of the verification conditions. It uses separation
logic assertions to represent program states and performs
symbolic execution. The entailment solver is based on a
separation logic elimination solver and an SMT solver.
During the verification process, it generates proofs for
assertion derivations. In this section, we will detail the
design of VEP-C, focusing on the assertion syntax, the
symbolic execution process, and the verified program.

3.1 Verification Process of VEP-C

Throughout this subsection, we use the annotated pro-
gram memset in Figure 4 as an example”. In this exam-
ple, we intentionally write “i = 0; for (; i1 < n;)

{ ...; 1 ++ }” (respectively in line 5, 8, and 19) rather
than the commonly used “for (i = 0; 1 < n; ++ i)
{ ... }”toillustrate the verification steps more conve-

niently. This is not a requirement or restriction in realistic

2To facilitate the reader’s understanding, we present a version of
the annotated program that leans more towards functional correctness.
Assertions in actual code are more straightforward.

verification tools.

1 void memset (char *pl, __u32 n, char v)

2 /*@ With 11

3 Require chars(pl,n,11)

4 Ensure 3 12, chars(pl,n,12) */

5 _u32 1 = 0;

6 /*@ 1 == 0 && chars(pl,n,11) */

7 /*@ Inv: 3 12, 0 < i < n && chars(pl,n,12) */
8 for (; 1 <n;) {

9 /*@ 312, 0 < i < n && chars(pl,n,12) */
10 pl[i] = v;

11 /*@ 313 12, 0 < 1 < n &&

12 13[0:1] == 12[0:1] &&

13 13[i] == v &&

14 13[i+l:n] == 12[i+l:n] &&
15 chars (pl,n,13) */

16 it+;

17 /*@ 31312, 0 <1i-1<n &&
18 13[0:i-1] == 12[0:1-1] &&
19 13[i-1] == v &&

20 13[i:n] == 12[i:n] &&

21 chars(pl,n,13) */ }

22 /*@ 3 12, i == n && chars(pl,n,12) */
23 return ; }

Figure 4: Annotated memset.

Line 2-4: In the beginning, the user needs to provide
a function specification, which indicates the condition
that the arguments together with the initial program state
need to satisfy when entering the function and the con-
dition that needs to be satisfied when exiting the func-
tion. A function specification consists of a With clause,
a Require clause, and an Ensure clause. The Require
clause indicates the function precondition; the Ensure
clause indicates the function postcondition; and the With
clause indicates the list of logical variables mentioned in
precondition which will be used in the whole program as-
sertions. In this example, the precondition is chars (p1,
n,11) (line 3), which indicates that pl is an array of
length n, with its data 11 being a list of characters. The
postcondition provided in line 4 specifies that the array
stored at p1 will be modified to a new character list 12.

Line 5-6: To verify the program in Figure 4, VEP-C
initiates symbolic execution based on the preconditions
of the function. For instance, after processing the vari-
able declaration and initialization at line 5, the strongest
postcondition in line 6 is computed. In this example, as-
sertions generated through symbolic execution are high-
lighted in red, distinguishing themselves from the asser-
tions provided by the user, which are displayed in blue.

Line 7-22: Before entering the loop, the user needs
to provide a loop invariant, which indicates the property
that the program state needs to satisfy at the beginning
and end of each loop iteration. VEP-C will check whether
the assertion before entering the function (lines 6) im-

plies the loop invariant (line 7). If the above check passes,
VEP-C will continue to symbolically execute the loop
condition testing from the loop invariant. Thus, in its
strongest postcondition (line 9), an additional proposi-
tion i < n is added, comparing to the Inv. Moreover,
symbolic execution will generate the strongest postcon-
dition of the assignment statement (lines 11-15), and the
strongest postcondition of the incremental step (lines 17-
21). VEP-C will check whether the assertion entails the
loop invariant Inv. The check is successful, thereby prov-
ing the correctness of the loop invariant. Subsequently,
we can derive the strongest postcondition at the end of the
loop, which is the strongest postcondition of Inv when
the loop condition evaluates to false (line 22).

Line 23: Finally, we perform symbolic execution on
the return statement. Unlike other statements, the return
statement requires the calculation of the return value (al-
though there is no return value in this example), followed
by the deallocation of all declared local variables and
corresponding updates of the assertions. In this case, the
variable i is deallocated, and the assertion is updated ac-
cordingly into 3 12, chars(pl,n,12). The final step
is to check whether the updated assertion implies the
postcondition of the function. The proof here is straight-
forward, thus completing the verification of this example.

3.2 Assertion Language of VEP-C

In the example of Figure 4, we used first-order logic to de-
scribe program states. For some C programs, such asser-
tions are sufficient to capture time costs and the changes
made to memory. However, most programs manipulate
more than one data structure (array, linked list, tree, etc).
These data structures are stored in disjoint memory loca-
tions and such disjointness is critical in verification. For
example, the C standard says that strncpy copies strings
from source to destination, while the source and desti-
nation memory space are disjoint [30, Section 7.24.2.4].
Therefore, some naive specification like the one in Fig-
ure 5 does not correctly describes strncpy’s behavior.

void strncpy (char *pl, char *p2, __u32 n)

/*@ With 11 12
Require chars(pl,n,11) && chars(p2,n,12)
Ensure chars(pl,n,12) && chars(p2,n,12) */;

AW —

Figure 5: A naive strncpy specification.

This specification appears to be very concise, but it
overlooks a critical issue: whether the two arrays, pl and
p2, overlap. If there is an overlap, the behavior of the
program could differ significantly, leading to potential
unintended side effects that are not accounted for by this

simple specification. Therefore, merely using first-order
logic is insufficient to meet our needs.

State-of-the-art research has provided us with new in-
sights, particularly through the introduction of separation
logic into assertions. Tools such as VST, VeriFast, and
Hip/Sleek [39] have demonstrated that using separation
logic is an effective method for clearly describing prop-
erties and facilitating symbolic execution, especially in
proofs related to memory properties.

Separation logic [41] uses a new connective separating
conjunction to ensure that different names duplicate no
identical addresses. The separating conjunction P Q rep-
resents the existence of two disjoint portions of the state,
one that satisfies P and one that satisfies Q. Specifically,

mEPxQ< Im,my.m=mywm Am =P rm=Q.

Here & means the disjoint union® and m |= P means m
satisfies P. A distinction between * and boolean con-
junction && is that P+ P # P where P&&P = P. In
particular, if store(p,v) means that the value v is stored
at address p, store(p,v) *store(q,u) implies p # g, and
thus store(p,v) = store(p,v) is always false: there is no
way to divide a heap that a cell p goes to both partitions.

Separation logic predicates can also be used to repre-
sent kernel resources [13,41], like semaphores and locks.
Intuitively, when a helper function is used to gain a piece
of resource, the corresponding predicate will be added to
the assertion. When a helper function is used to release
a piece of resource, the predicate are required to appear
beforehand (which will be checked by VEP) and will
then be removed. In separation logic, those resources act
like memory. We show an example in Appendix E.

VEP-C uses separation-logic assertions in the canoni-
cal form of a symbolic heap. A symbolic heap is in the
form 3X.(Py A -+- APy A Qy -+ % Qy,), where the pure
part P describes memory-irrelevant properties between
terms (e.g. el, e2), and the spatial part Q is a separating
conjunction of spatial predicates. For example, el==e2
and el>e2 can appear as memory-irrelevant conjuncts;
the empty heap predicate emp and the points-to predicate
store (el,e2) can appear as spatial conjuncts. Addi-
tionally, users can define their own predicates according
to their specific needs. For example, a user can define a
string array predicate such as chars(a,el, e2).

With the help of separation logic, we can write the
specification shown in Figure 6, which describes the sce-
nario stipulated by the C standard where pl and p2 do
not overlap in memory.

SAwB=AUBIfANB= &, Otherwise, A w B is undefined. For
example, {1,2,3,5} = {1,3} w {2,5}, but {1,3} w {1,2} is undefined.

void strncpy (char *pl, char *p2, __u32 n)
/*@ With 11 12
Require chars(pl,n,1l) * chars(p2,n,12)
Ensure 3 13,
chars(pl,n,13) * chars(p2,n,12) */;

(O R S

Figure 6: A correct strncpy specification.

Traditionally, these terms (e1, e2, etc) above in pure
parts and spatial parts should be memory-irrelevant ex-
pressions. For example, if x is a C variable of a struct
type, then & (x.tail) is a memory-irrelevant expression,
because computing its value does not include a load from
memory. Many verification tools use this setting inter-
nally because this assertion language prevents a lot of
ambiguity. For example, it may be unclear whether the
predicate store (*x, 0) only claims the memory per-
mission at address *x, or it claims the memory permis-
sion at addresses *x and x — if we take the address of
storing variable x into consideration, it becomes even
more complicated. VEP-C extends traditional symbolic
heap and allows users to use memory-related expressions,
which makes assertions more concise. VEP-C automat-
ically transforms the expression to the traditional sym-
bolic heap. In this way, users avoid a large portion of
boilerplate’. For example, VEP-C allows users to write
*y==x—tail, which is equivalent to:

3 v yp,
store((field_addr (x,tail),v) *
store(y, yp) * store(yp, V)

Through the application of separation logic assertions,
users gain the capability to formally specify function
properties while simultaneously verifying both the funda-
mental safety guarantees (Properties 1 and 2 as detailed
in Section 2.2) and comprehensive functional correctness
properties within a unified verification framework.

Verification when helper functions involve in The
acquisition and release of kernel resources of eBPF pro-
grams relies on helper functions, making the symbolic
execution of helper function calls a critical component
in the verification process. The VEP framework incorpo-
rates predefined specifications for most helper functions,
formally characterizing their interactions with memory
subsystems and kernel resource management. These
specifications are derived from eBPF’s official docu-
mentation [1]. Figure 7 presents the specifications for
bpf_sk_lookup_udp and bpf_sk_release, while Fig-
ure 8 illustrates the symbolic execution behaviors of these
two helper functions. The complete program is provided

4The detailed syntax and transformation algorithm can be found in
Appendix A and B.

in Appendix E.

1 struct bpf_sock * bpf_sk_lookup_udp

2 (void *ctx, struct bpf_sock_tuple *tuple,

3 __u32 tuple_size, __u64 netns, __u64 flags)

4 /*@ xdp_version

5 Require flags == 0 &&

6 valid_size (tuple_size, tuple) &&

7 store_xdp (ctx) * store_sock_tuple(tuple)

8 Ensure store_sock(__return) * store_xdp(ctx) *
9 store_sock_tuple (tuple) */;

1 int bpf_sk_release (void * sock)

2 /*@ sock_version

3 Require sock != NULL && store_sock (sock)
4 Ensure 3 v, __return == v */;

Figure 7: The specification of bpf_sk_lookup_udp and
bpf_sk_release

In Figure 7, the valid_size predicate ensures that the
value of tuple_size correctly corresponds to tuple.
Specifically, if tuple represents an IPv4 socket, then
tuple_size mustbe sizeof (tuple—ipv4), and sim-
ilarly for IPv6. The store_sock (sk) predicate ensures
that if sk is a null pointer, it corresponds to an empty
memory region. Otherwise, if sk is non-null, it provides
access to a valid socket. This definition guarantees that
memory operations on sk can only be performed after
checking whether sk is null.

1 /*[auto generated pre]

2 ipv4 (tuple) && store_xdp(ctx) *

3 store_sock_tuple (tup) */

4 sk = bpf_sk_lookup_udp(ctx, &tup,

5 sizeof (tup.ipvd), 0, 0);

6 /*[auto generated]

7 store_xdp (ctx) * store_sock_tuple(tup) *
8 store_sock (sk) */

9 ...
10 /*[auto generated pre]
11 sk != NULL && store_xdp(ctx) *
12 store_sock_tuple (tup) * store_sock(sk) */

13 bpf_sk_release(sk);
14 /*[auto generated]
15 store_xdp (ctx) * store_sock_tuple (tup) */

Figure 8: The symbolic execution result of

bpf_sk_lookup_udp and bpf_sk_release

In Figure 8, we assume that tup is an IPv4 socket be-
fore the helper function call in line 4. Therefore, the func-
tion call on line 4 satisfies the function specification of
xdp_version, allowing us to obtain a store_sock (sk).
‘When execution reaches line 12, we know that sk is non-
null. Consequently, the function call on line 12 satisfies
the function specification of sock_version, enabling us
to properly reclaim the allocated socket memory.

By leveraging these built-in helper function specifi-
cations, VEP automatically enforces the verification of

safety guarantee Properties 3 and 4 (as specified in Sec-
tion 2.2) during symbolic execution. The full list of helper
function specifications can be found in our GitHub repos-
itory.

3.3 Output of VEP-C

After the symbolic execution and entailment solver pro-
cesses, VEP-C completes the verification of the input
program. Based on the verification process, VEP-C gen-
erates a verified C program, which is then passed to the
VEP-compiler to be compiled into bytecode. Figure 9
illustrates the verified C program corresponding to the
program in Figure 4. Due to space constraints, we have
omitted the specific assertions and proof content.

1 void memset (char *pl, __u32 n, char v)
2 /*@ With 11

3 Require chars(pl,n,11)

4 Ensure chars(pl,n,repeat (v,n)) */
5 { _u321i-=0;
6

7

8

/*@ Assertion_1 with Proof_1 */
/*@ Inv with Proof_2 and Proof_6 */
for (;j 1 <n;) {
9 /*@ Assertion_2 with Proof_3 */
10 plli] = v;
11 /*@ Assertion_3 with Proof_4 */
12 it++;
13 /*@ Assertion_4 with Proof_5 */ }
14 /*@ Assertion_5 with Proof_7 */
15 return ; /*@ Proof_8 */ }

Figure 9: Verified memset.

In this example, Proof_1, Proof_ 3, Proof_4,
Proof_5, and Proof_7 pertain to the verification of
various safety checks during symbolic execution. These
include range checks for array writes, as well as checks
to ensure that there are no undefined behaviors during
assignments. Proof_2 and Proof_ 6 are associated
with the verification of the validity of loop invariants.
Proof_8 ensures that the function postcondition is
satisfied upon completion of the function.

4 Detailed Design of VEP-compiler

An annotated C program undergoes several compilation
passes before being converted into an annotated eBPF
bytecode. While most of these passes are standard, modi-
fications to assertions and proofs are necessary through-
out the process. It’s worth noting that the VEP-compiler
contains only a few optimization passes at present, pri-
marily for simplicity, which may not generate the most
efficient bytecode. How to incorporate additional compi-
lation optimizations while ensuring accurate transforma-
tion of assertions and proofs is a future work.

‘ front end‘ ‘ generate bytecode ‘

|

‘ remove compound expression‘

‘ optimize unnecessary jumps‘

|

‘ impose calling conventions ‘

|

‘ spill addressed variables‘

‘ finalize frame layout‘

assign registers

‘ instruction selection }4—{ spill variables ‘

| fail

‘ live analysis}—b{ graph coloring

succeed

Figure 10: The nanopass-style compilation process

//@ 3 v, store((field_addr (x,tail),v)
|| compile
//@ 3 v, store(x + 8,v)

Figure 11: IR Generation example

Figure 10 shows the whole compilation process. Every
pass has a single simple and clear purpose, as in the
nanopass framework [44]. We discuss the transformation
during relevant passes in the rest of this section.

4.1 IR Generation

In our intermediate representation, we replace structure-
member access by dereferencing the address of the struc-
ture plus the offset of the member. We do the same for
assertions, as illustrated in Figure 11.

4.2 Calling Conventions

The BPF calling convention is defined as follows.

1. RO stores the return value.

2. R1 to R5 are used to pass arguments.

3. R6 to RY are callee saved. Others are caller-saved.
All the helper functions obey the suggested calling con-
vention. We adopt the same convention in compiling
in-program functions, so the compiler modifies function
specifications to reflect the calling convention as follows.

1. Return value __return is replaced by RO.

2. Function parameters are replaced by R1 to R5.

3. State that R6 to R9 are preserved.

The generated code saves used callee-saved registers on
the stack at the beginning of a procedure and restores
them before returning. To convince the symbolic executor
that callee-saved registers are indeed unchanged, we also
modify each assertion in the procedure. They state that
certain portions of the stack contain the original values
of callee-saved registers.

strncpy:
/*@ With 11 12 _R1 _R2 _R3 _R6 _R7 _R8 _R9
Require
_R1l == Rl &&
_R2 == R2 &&
_R3 == R3 &&
_R6 == R6 && _R7 == R7 &&
_R8 == R8 && _R9 == R9 &&
chars(R1, R3, 11) * chars(R2, R3, 12)
Ensure

_R6 == R6 && _R7 == R7 &&
_R8 == R8 && _R9 == RO &&
chars (_R1,_R3,12) * chars(_R2,_R3,12) */

Figure 12: Transformation of the function specification
for strncpy. pl, p2, n and __return are replaced by R1,
R2, R3, and RO, respectively.

Figure 12 shows the specification in Figure 5 produced
by this pass. Besides the substitution defined previously,
the compiler introduces auxiliary logic variables _Ri-s
to relate the register values at function entry and those at
the return point.

4.3 Register Allocation

We adopt a standard “iterated register coalescing” algo-
rithm [25]. Most of the time, simply substituting variables
in assertions with their corresponding registers (or their
location on the stack, if it is spilled) is enough. The only
exception is when the variable is not live (the value of
the variable is not used later) at that point. In that case,
the register does not necessarily hold the value of the
variable: maybe another variable is using it. To make the
assertion valid while retaining information, the variable
should be substituted by an existentially quantified logic
variable. Figure 13 shows a complete example. The third
line in the source code takes the address of x, so x is
spilled to the stack. p and g are assigned to the same
register R1 because they are unused.

In annotated code, register allocation can sometimes
yield interesting results. Figure 14 shows one example.

In the previous example, the C code clearly fails VEP-
C verification, but the compiler generates valid eBPF
bytecode for it. This is due to liveness analysis determin-
ing that the value of x is not live at that point. We believe
rejecting such code at the VEP-C level is reasonable and
does not compromise programmability. Even if one only
uses VEP-compiler and VEP-eBPF, he/she can still trust
the safety of the C code, because (1) the precondition
is unchanged, and (2) propositions related to resources
(time, memory) are unaffected.

int x, y, *p, *q;
x=0;y=1

p=6x; g=0;

//Ry ==x+1sp!=q
return y;

|| compile

*(R10 - 4) =0
RO =1
Rl = RI10
Rl -= 4
Rl =0 // p and g are not used
/*@ Rl == *(R10-4) + 1 &&
3 p_q p'l=_q*/
ret

Figure 13: An assertion after register allocation.

int x = 0; RO =0
//@ x == = /@3 x, x==1
return; ret

Figure 14: Example of register allocation.

4.4 Frame Layout

In annotated C programs, a variable is available after we
declare it. But in bytecode, there are no such declarations.
So the frame—which contains spilled scalar variables,
structures, and so on—should be specified in the pre-
condition so that the symbolic executor knows which
addresses are valid. Knowing how much stack space a
procedure consumes is also necessary to verify that the
whole program does not exceed the stack space limit.

Figure 15 shows a complete example. In the exam-
ple, we assume the compiler places 1 at R10-16. Con-
sequently, R10-16 stores an integer, and R10-8 stores a
pointer to a struct 1list. The underscores indicate that
their actual values are not needed.

5 Detailed Design of VEP-eBPF and Proof
Check

VEP-eBPF processes the annotated bytecode produced
by the VEP-compiler and performs symbolic execution.
During this execution, when it encounters assertion entail-
ment or safety checks typically requiring an entailment
solver, VEP-eBPF distinguishes itself from VEP-C by
not invoking an SMT solver. Instead, it verifies whether
the proofs, generated by the SMT solver and transformed
by the VEP-compiler, correctly establish the required
entailments. If all entailments can be validated through
their corresponding proofs, it indicates that the bytecode
is safe, allowing the program to be loaded into the kernel.

VEP-eBPF’s proof language is designed to include

struct list {
int x;
struct list *next;
i
int f()
/*@ Require emp
Ensure __return == 0 */
{ struct list 1;
1l.head = 0;
return l.head; }

|| compile

f: /*@ Require
*(R10-16) == _ *

*(R10-8) == _
Ensure RO == 0 */

Figure 15: A precondition decorated with frame infor-
mation. Assume 1 is located at R10-16, then the com-
piler guarantees that R10-16 stores an integer and R10-8
stores a pointer to a struct list. The underscores in-
dicate that they are uninitialized.

both spatial parts derivation proofs and pure proposi-
tional parts derivation proofs. The spatial parts proofs
are primarily syntactic transformations of the entailment
using established separation logic properties. These prop-
erties have been formalized and proved within the Coq
proof assistant, ensuring their correctness. On the other
hand, the pure parts proofs are based on a proof language
inspired by cvc5, a well-known SMT solver. In this pro-
cess, no SMT solving is required. The spatial syntax
transformation and pure proof checking are handled by
highly efficient algorithms.

As a result, VEP-eBPF is an efficient, low-memory
proof checker ideally suited for kernel-space deployment.
The lightweight nature of these algorithms contributes
to the overall performance, making VEP-eBPF a robust
tool for verifying the safety of eBPF bytecode without
the overhead of traditional SMT-based methods.

6 Evaluation

We evaluate the time cost, memory efficiency, and verifi-
cation accuracy of VEP compared to the Linux verifier
(Kernel 5.15) and PREVAIL (August 2024 version). Our
benchmark selected a total of 41 programs across four
categories of programs: Linux kernel samples, PREVAIL
test cases, C standard library string functions, and un-
safe programs with known vulnerabilities, such as out-
of-bounds memory accesses and invalid function call.
Detailed per-program results are provided in Appendix C
(Tables 4 and 5), and all data is publicly available in our

GitHub repository’.

6.1 Performance Analysis

The Linux verifier demonstrates superior stability with
consistent sub-millisecond verification times (avg. 0.94
ms) and low memory consumption (<5.2 MB) across all
benchmarks (Table 2). In contrast, VEP-eBPF achieves
3-5x faster verification than both PREVAIL (avg. 13.88
ms) and VEP-C (avg. 39.46 ms), while maintaining pre-
dictable memory usage of 2-3 MB — a 75% reduction
compared to VEP-C’s 8.5-32.6 MB footprint. This effi-
ciency gain stems from our novel design choice discussed
in Section 2.

6.2 Verification Accuracy

While all tools successfully reject 100% of unsafe pro-
grams (10/10 PR), critical deficiencies emerge in their
handling of safe implementations. The Linux verifier
demonstrates particularly severe limitations, accepting
only 60% of safe programs (6/10 PR) with a 40% rejec-
tion rate - primarily stemming from inadequate loop ver-
ification (e.g., StringLib functions). PREVAIL exhibits
even more erratic behavior, achieving wildly inconsistent
acceptance rates from 10% (1/10 PR) on StringLib to
80% (8/10 PR) for its own test suite, a consequence of its
SMT solver dependency introducing non-determinism.

This version-induced instability compounds the prob-
lem - 30% of PREVAIL samples and 20% Linux kernel
programs that previously passed verification get rejected
after updates, exposing fundamental flaws in their ar-
chitectural design. Such brittleness severely undermines
their reliability for production deployment.

In stark contrast, VEP achieves perfect verification out-
comes across all benchmarks: 100% acceptance (10/10
PR) for properly annotated safe programs and 100% re-
jection of unsafe implementations. As long as the user
provides correct annotations, VEP ensures there are no
false positives and no false negatives. This deterministic
behavior persists across kernel versions, demonstrating
VEP’s architectural superiority in balancing verification
rigor with practical stability.

6.3 Annotation Efficiency

Tables 2 and 3 present the total lines of code, the number
of user-written assertions, and the corresponding proof
obligations generated by VEP. The comparison highlights

Shttps://github.com/yashen32768/NSDI25-VEP-535

that VEP requires a relatively modest number of asser-
tions to verify programs effectively. For example, in the
Linux samples with 618 lines of code, only 76 assertions
were needed, resulting in 64,840 proof obligations. This
indicates that a small number of high-level assertions
can generate comprehensive proof coverage. Although
the generated proofs are extensive, the verification pro-
cess remains efficient because our proof checker is highly
lightweight, ensuring minimal verification time.

Regarding the effort required to write annotated pro-
grams, we observe that adding annotations does not
demand extensive modifications to the original code.
Most assertions involve standard properties such as mem-
ory safety, resource bounds, and function preconditions,
which can be specified with basic knowledge of program
verification concepts. The expertise required is compara-
ble to writing simple function contracts or preconditions
in languages with contract support.

Furthermore, VEP supports the generation of specifica-
tions for several functions through lightweight methods,
reducing manual effort. As VEP evolves, we aim to au-
tomate more of the assertion generation process, further
minimizing the manual effort required and lowering the
expertise barrier for new users.

6.4 Case Study : Key_Connection

The Key_Connection example (last row in Tables 2-3)
demonstrates VEP’s ability to verify non-eBPF network
functions — specifically, an L7 filter mapping string keys
to backend servers. Detailed code and the annotations
for this example can be found in Appendix D. For this
program, VEP generates 350 lines of annotated bytecode
and 5,800 lines of proof.

This capability addresses critical limitations in current
eBPF frameworks like Cilium [11], which must offload
complex L7 logic to external proxies (Envoy [21]) due
to verification challenges. By enabling verifiable L7 pro-
cessing, VEP could eliminate proxy dependencies while
maintaining safety guarantees.

7 Future Work

In advancing eBPF program verification, several critical
areas offer promising research opportunities. This sec-
tion outlines key directions for future work designed to
enhance and expand the capabilities of our verification
framework, aiming to make it more robust and applicable
to real-world scenarios.

Programs Total Code Linux verifier PREVAIL
PR | MaxT | AvgT | MaxM | PR | MaxT | AvgT | MaxM
Source Lines (ms) (ms) (KB) (ms) (ms) (KB)
Linux samples 618 9/10 1.13 0.94 4196 | 10/10 | 48.37 | 12.48 | 7918
PREVAIL samples 252 6/10 1.08 0.71 4200 8/10 | 74.67 | 13.88 | 5279
StringLib 321 3/10 2.69 1.83 5168 1/10 | 39.89 | 39.89 | 7267
Unsafe Programs 195 10/10 | 0.051 | 0.038 | 4340 | 10/10 | 34.88 | 6.05 5312
Key_Connection 63 0/1 0.025 | 0.025 | 4304 0/1 2.312 | 2.312 | 5004
Table 2: Evaluation results for Linux verifier and PREVAIL.
Programs Total Assertion | Total Proofs PR Ma;’,TEP;A(\j/gT NaxM C(jir\lgi,er MaxTV]ii]_;,]l? Pll\:/[axM
Source Lines Lines (ms) | (ms) | (KB) (ms) (ms) | (ms) | (KB)
Linux samples 76 64840 10/10]158.12(39.46| 32569 | 1.73 |21.69 | 8.42 | 8034
PREVAIL samples 49 41931 10/10| 40.23 | 9.38 | 12422 | 0.47 4.40 | 2.76 | 3047
StringLib 112 56117 10/10| 36.60 | 13.47| 12612 | 0.66 3.54 | 2.63 | 2970
Unsafe Programs 32 - 10/10| 5.36 | 3.32 | 2955 - - - -
Key_Connection 17 5819 1/1 | 16.24 [16.24| 8534 0.56 248 | 2.48 | 2440

Table 3: Evaluation results for VEP. ‘PR’ refers to the acceptance rate for safe programs and the rejection rate for

unsafe programs.

Towards Functional Correctness As our demands for
programs increase, memory safety alone no longer meets
our development requirements. We aim to go further by
supporting the verification of the functional correctness
of eBPF programs. From this perspective, VEP needs to
enable users to directly write proofs within C annotations
or provide an interface to incorporate external proofs.

Towards Less Annotations Given that VEP currently
requires users to provide necessary C annotations, in-
cluding function preconditions, postconditions, and loop
invariants, we aim to introduce additional tools to auto-
mate the generation of these annotations and reduce the
user’s burden. Traditional verification tools [20, 32] have
already made progress in this area, and recent advance-
ments have been achieved by integrating large language
models [42,45]. In the future, VEP will be able to adopt
similar approaches to automate the generation of some
annotations, thereby minimizing the user’s workload.

Towards Compilation Optimization Advanced op-
timization passes may dramatically change the control
flow and data flow of a program, and assertion anno-
tations should be modified accordingly. In our current
compiler, one such compilation pass is register allocation,
in which multiple variables may be represented by one
register (as long as their lifetime does not overlap) — we
translate all these variables to the register in assertions.
In the future, optimization passes may be added to elimi-

nate some redundant instructions or redundant variables.
Then, corresponding algorithms need to be designed to
compile assertion annotations.

8 Conclusion

Since its proposal, eBPF is widely used in various do-
mains while its verification often comes with a trade-off
between safety and programmability. In this paper, we
propose a two-stage automatic formal framework that
addresses this issue between verification and programma-
bility. It empowers eBPF developers to write annotations
regarding the memory to guide automatic verification.
As far as we are concerned, this is the first approach
that could verify the safety and resource constraints of
eBPF programs without compromising programmability.
Specifically, a safe eBPF program can always pass VEP’s
check, provided that it includes sufficient annotations.
Based on this, we implement a prototype toolchain
VEP. Our evaluation further demonstrates that VEP can
verify the safety of complex programs with moderate
overhead, which highlights the potential of the two-stage
framework as a practical solution for kernel security. We
believe this will enable eBPF to support more flexible
and powerful programs across a wider range of domains.

Acknowledgements This work was supported by the
NSF China (No. 62272292 and 62472274). We also thank
our shepherd Rishabh Iyer and the NSDI reviewers.

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

ebpf docs. https://docs.ebpf.io/linux/
helper-function/.

The Cilium Authors. Cilium. https://cilium.

io/.

The Falco Authors. falco. https://falco.org/.

The Pixie Authors. pixie. https://pixielabs.

ai/.

Haniel Barbosa, Andrew Reynolds, Tim King,
Mudathir Mohamed, Andres Noetzli, Andrew V.
Sutherland, Cesare Tinelli, Clark W. Barrett, Mor-
gan Deters, and Mathias Preiner. cvcS: A versatile
and industrial-strength smt solver. In Dana Fisman
and Grigore Rosu, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 28th In-
ternational Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Ger-
many, April 2-7, 2022, Proceedings, Part I1, volume
13244 of Lecture Notes in Computer Science, pages
415-442. Springer, 2022.

Matteo Bertrone, Sebastiano Miano, Fulvio Risso,
and Massimo Tumolo. Accelerating linux security
with ebpf iptables. In Proceedings of the ACM SIG-
COMM 2018 Conference on Posters and Demos,
pages 108-110, 2018.

Ashish Bijlani and Umakishore Ramachandran. Ex-
tension framework for file systems in user space.
In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 121-134, Renton, WA,
2019. USENIX Association.

Nikolaj Bjgrner and Leonardo de Moura. Proofs
and refutations, and z3. In Proc. 7th International
Workshop on Implementation of Logics (IWIL),
CEUR Workshop Proc, volume 418, pages 123-132,
2008.

Barry Bond, Chris Hawblitzel, Manos Kapritsos,
K. Rustan M. Leino, Jacob R. Lorch, Bryan Parno,
Ashay Rane, Srinath Setty, and Laure Thompson.
Vale: Verifying High-Performance cryptographic
assembly code. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 917-934, Van-
couver, BC, August 2017. USENIX Association.

Cristiano Calcagno, Dino Distefano, Manuel Fihn-
drich, Francesco Logozzo, and Peter W. O’Hearn.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

Moving fast with software verification. In NASA
Formal Methods, pages 3—11. Springer, 2015.

Cilium. Cilium Service Mesh. https://cilium.

io/use-cases/service-mesh, 2024. Accessed:
2024.

Edmund Clarke, Daniel Kroening, and Flavio Lerda.
A tool for checking ANSI-C programs. In Tools
and Algorithms for the Construction and Analysis
of Systems, pages 168—176. Springer, 2004.

Thomas Dinsdale-Young, Mike Dodds, Philippa
Gardner, Matthew J. Parkinson, and Viktor
Vafeiadis. Concurrent abstract predicates. In
Proceedings of the 24th European Conference
on Object-Oriented Programming, ECOOP’10,
page 504-528, Berlin, Heidelberg, 2010. Springer-
Verlag.

Kumar Kartikeya Dwivedi, Rishabh Iyer, and Sanid-
hya Kashyap. Fast, flexible, and practical kernel
extensions. In Proceedings of the ACM SIGOPS
30th Symposium on Operating Systems Principles,
SOSP 24, page 249-264, New York, NY, USA,
2024. Association for Computing Machinery.

eBPF Development Team. ebpf. https://ebpf.
io/, 2022.

The eBPF Development Team. Bounded loops
in bpf for the 5.3 kernel. https://lwn.net/
Articles/794934/.

The eBPF Development Team.
bpf_for_each_map_elem helper.
net/Articles/846504/.

bpf: add
https://lwn.

The eBPF Development Team. bpf: add search
pruning optimization and tests. https://lwn.
net/Articles/614226/.

The eBPF Development Team. ebpf verifier.
https://docs.kernel.org/bpf/verifier.
html.

Mnacho Echenim, Nicolas Peltier, and Yanis Sell-
ami. Ilinva: Using abduction to generate loop in-
variants. In Andreas Herzig and Andrei Popescu,
editors, Frontiers of Combining Systems - 12th In-
ternational Symposium, FroCoS 2019, London, UK,
September 4-6, 2019, Proceedings, volume 11715
of Lecture Notes in Computer Science, pages 77-93.
Springer, 2019.

https://docs.ebpf.io/linux/helper-function/
https://docs.ebpf.io/linux/helper-function/
https://cilium.io/
https://cilium.io/
https://falco.org/
https://pixielabs.ai/
https://pixielabs.ai/
https://cilium.io/use-cases/service-mesh
https://cilium.io/use-cases/service-mesh
https://ebpf.io/
https://ebpf.io/
https://lwn.net/Articles/794934/
https://lwn.net/Articles/794934/
https://lwn.net/Articles/846504/
https://lwn.net/Articles/846504/
https://lwn.net/Articles/614226/
https://lwn.net/Articles/614226/
https://docs.kernel.org/bpf/verifier.html
https://docs.kernel.org/bpf/verifier.html

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Envoy. Envoy is an open source edge and ser-
vice proxy, designed for cloud-native applications.
https://www.envoyproxy.io, 2024. Accessed:
2024.

Yuyou Fan and John Regehr. High-throughput,
formal-methods-assisted fuzzing for llvm. In 2024
IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO), pages 349-358,
2024.

William Findlay, Anil Somayaji, and David Barrera.
Bpfbox: Simple precise process confinement with
ebpf. In Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Work-
shop, pages 91-103, 2020.

Robert W Floyd. Assigning meanings to programs.
In Program Verification, pages 65-81. Springer,
1993.

Lal George and Andrew W. Appel. Iterated regis-
ter coalescing. ACM Trans. Program. Lang. Syst.,
18(3):300-324, may 1996.

Elazar Gershuni, Nadav Amit, Arie Gurfinkel,
Nina Narodytska, Jorge A Navas, Noam Rinetzky,
Leonid Ryzhyk, and Mooly Sagiv. Simple and pre-
cise static analysis of untrusted linux kernel exten-
sions. In PLDI, pages 1069—1084, 2019.

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Ar-
jun Narayan, Bryan Parno, Danfeng Zhang, and
Brian Zill. TIronclad apps: End-to-End security
via automated Full-System verification. In /1th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 165-181,
Broomfield, CO, October 2014. USENIX Associa-
tion.

C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576-580,
oct 1969.

Toke Hgiland-Jgrgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert,
David Ahern, and David Miller. The express data
path: Fast programmable packet processing in the
operating system kernel. In CoNEXT, pages 54-66,
2018.

International Organization for Standardization.
ISO/IEC 9899:2018: Programming Languages —
C. International Organization for Standardization,
Geneva, Switzerland, 2018.

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

Bart Jacobs, Jan Smans, Pieter Philippaerts,
Frédéric Vogels, Willem Penninckx, and Frank
Piessens. Verifast: A powerful, sound, predictable,
fast verifier for ¢ and java. In Mihaela Bobaru,
Klaus Havelund, Gerard J. Holzmann, and Rajeev
Joshi, editors, NASA Formal Methods, pages
41-55, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

Ton Chanh Le, Guolong Zheng, and ThanhVu
Nguyen. SLING: using dynamic analysis to in-
fer program invariants in separation logic. In
Kathryn S. McKinley and Kathleen Fisher, editors,
Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019, pages 788-801. ACM, 2019.

K. Rustan M. Leino. Dafny: An automatic program
verifier for functional correctness. In Edmund M.
Clarke and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning,
pages 348-370, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

Sebastiano Miano, Matteo Bertrone, Fulvio Risso,
Massimo Tumolo, and Mauricio Visquez Bernal.
Creating complex network services with ebpf: Ex-
perience and lessons learned. In 2018 IEEE 19th
International Conference on High Performance
Switching and Routing (HPSR), pages 1-8. IEEE,
2018.

George C. Necula. Proof-carrying code. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
POPL °97, page 106-119, New York, NY, USA,
1997. Association for Computing Machinery.

George C. Necula and Peter Lee. Safe kernel exten-
sions without run-time checking. In Proceedings of
the Second USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI *96, page
229-243, New York, NY, USA, 1996. Association
for Computing Machinery.

Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling
symbolic evaluation for automated verification of
systems code with serval. In SOSP, 2019.

Luke Nelson, Xi Wang, and Emina Torlak. A proof-
carrying approach to building correct and flexible
in-kernel verifiers. https://lpc.events/event/

https://www.envoyproxy.io
https://lpc.events/event/11/contributions/944/attachments/893/1707/2021-09-23-lpc21.pdf

11/contributions/944/attachments/893/
1707/2021-09-23-1pc21.pdf.

[39] Huu Hai Nguyen, Cristina David, Shengchao Qin,
and Wei-Ngan Chin. Automated verification of
shape and size properties via separation logic. In In-
ternational Workshop on Verification, Model Check-
ing, and Abstract Interpretation, pages 251-266.
Springer, 2007.

[40] Tobias Nipkow, Lawrence C. Paulson, and Markus
Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[41] Peter O’Hearn. Separation logic. Communications
of the ACM, 62(2):86-95, 2019.

[42] Kexin Pei, David Bieber, Kensen Shi, Charles Sut-
ton, and Pengcheng Yin. Can large language models
reason about program invariants? In Proceedings
of the 40th International Conference on Machine
Learning, ICML23. JMLR.org, 2023.

[43] Alastair Robertson. bpftrace. https://github.
com/iovisor/bpftrace.

[44] Dipanwita Sarkar, Oscar Waddell, and R. Kent Dy-
bvig. A nanopass infrastructure for compiler edu-
cation. SIGPLAN Not., 39(9):201-212, sep 2004.

[45] Xujie Si, Hanjun Dai, Mukund Raghothaman,
Mayur Naik, and Le Song. Learning loop invariants
for program verification. In Proceedings of the 32nd
International Conference on Neural Information
Processing Systems, NIPS’18, page 7762-7773,
Red Hook, NY, USA, 2018. Curran Associates Inc.

[46] Calico Development Team. Calico. https://www.

tigera.io/project-calico/.

[47] The Aqua Tracee Development Team. tracee.
https://www.aquasec.com/products/

tracee/.

[48] The Coq Development Team. Coq. https://coq.

inria.fr/.

[49] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben
Pfaff. revisiting the open vswitch dataplane ten
years later. In Proceedings of the 2021 ACM SIG-
COMM 2021 Conference, pages 245-257, 2021.

[50] Qiushi Wu, Zhongshu Gu, Hani Jamjoom, and
Kangjie Lu. Gnnic: Finding long-lost sibling func-
tions with abstract similarity. Proceedings 2024

[51]

[52]

(53]

Network and Distributed System Security Sympo-
sium, 2024.

Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis
Zarkadas, Jeffrey Tao, Evan Mesterhazy, Michael
Makris, Junfeng Yang, Amy Tai, Ryan Stutsman,
et al. {XRP}:{In-Kernel} storage functions with
{eBPF}. In 16th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 22),
pages 375-393, 2022.

Yuhong Zhong, Hongyi Wang, Yu Jian Wu, Asaf
Cidon, Ryan Stutsman, Amy Tai, and Junfeng Yang.
Bpf for storage: an exokernel-inspired approach.
In Proceedings of the Workshop on Hot Topics in
Operating Systems, pages 128—135, 2021.

Litao Zhou, Jianxing Qin, Qinshi Wang, Andrew W.
Appel, and Qinxiang Cao. Vst-a: A foundationally
sound annotation verifier, 2023.

https://lpc.events/event/11/contributions/944/attachments/893/1707/2021-09-23-lpc21.pdf
https://lpc.events/event/11/contributions/944/attachments/893/1707/2021-09-23-lpc21.pdf
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://www.tigera.io/project-calico/
https://www.tigera.io/project-calico/
https://www.aquasec.com/products/tracee/
https://www.aquasec.com/products/tracee/
https://coq.inria.fr/
https://coq.inria.fr/

A Syntax of VEP-C Assertions

In this section, we discuss the syntax of VEP-C asser-
tions, which are divided into two main categories: user
assertions and internal assertions. User assertions enable
developers to annotate C code with specific directives,
whereas internal assertions support the tool’s symbolic
execution and reasoning processes.

A.1 Syntax of User Assertions

The primary design principle of user assertions is to align
as closely as possible with the habits of C programmers,
while also ensuring sufficient expressiveness for formal
reasoning at the logical level. We begin by defining the
expressions used in user assertions, followed by an expla-
nation of how to construct a complete assertion. Lastly,
we will discuss the structure of function specifications
within this framework.

The expressions are inductively defined in Figure 16.
The only thing unfamiliar is custom functions. They are
functions in the logic world. For example, we provide
a built-in function rev(l) that reverses a list (a list of
values, not a data structure in C).

A user assertion can consist of several branches, each
of which is divided into a section that describes pure
facts and another that describes memory aspects. The
syntax tree is defined in Figure 17. The semantics of
user assertions is a little different from textbook sepa-
ration logics, because of its HCI nature. To convince
yourself that our transformation explained later makes
sense, imagine we normalize every memory-related ex-
pression to a form */. We assume two [s are different
simply by their syntax. Then, each proposition—whether
pure or spatial—describes such memory locations in addi-
tion to their spatial part, if any. When they are connected
through conjunction && or separating conjunction *, we
union these locations; when connected through | |, we
keep them local to each case.

Just like custom functions, users can introduce cus-
tom predicates. For example, our built-in predicate
Ebpf_map(m) denotes that an eBPF map is stored at a
location m.

A function specification consists of three parts: log-
ical variable list (With clause), precondition (Require
clause), and postcondition (Ensure clause).

With clause. An implicit "V" around the specification.
They are sometimes essential to relate the program state
at the function exit point to the one at the function entry.
They can even appear in annotations inside the function

so that developers have convenient access to the initial
state. In general, their values should be "determinable"”
from the precondition.

Require clause. The precondition describes properties
that the program state at function entry should satisfy.

Ensure clause. The postcondition describes properties
that the program states when the function exits should
satisfy. We use the keyword __return to refer to the
return value, if any.

The syntax of function specifications is formally de-
fined in Figure 18:

A.2 Syntax of Internal Assertions

We use a canonical form of assertions, internal assertions,
actual symbolic execution, constraint solving, and every-
thing. They have a simpler structure and clearer seman-
tics (paradoxically, user-friendly assertions have complex
semantics). Each internal assertion consists of several
branches; each of which includes four parts: Exist, Lo-
cal, Prop, and Sep. Exist is a list of existential variables,
either explicitly written by developers or automatically
generated during transformation (explained later). Local
describes the relations between program variables and
the logic world. For example, in C, &v = e means that
the address of the program variable v is expression e; in
eBPF bytecode, r = e means the register r stores value e.
Prop stores pure facts. Sep stores memory-related facts.
The syntax of internal assertions is defined in Figure 19.
We will use an example to clearly illustrate the dis-
tinction between user assertions and internal assertions.
Consider the following annotation in a C program:

exists v, y = &x && x == 2 * v &&
forall n, v !=n * n

An equivalent internal assertion looks like this:

Ex :V VX VY

Local &x = px, &y = py

Prop : vy == px && vx == 2 * v &&
forall n, n !=n * n

Sep : store(px, int, vx)

* store(py, int, wvy)

In this example, the user assertion describes an integer
variable x, whose value is an even number that is not a
perfect square; y is a pointer to x. The internal assertion
introduces two new existential variables vx and vy to
represent the current values of the program variables x

Expression

Unary operator
Binary operator

Pure proposition

©
@

unary and binary operation

= 7€ Zga integer literal
| vp | v C variable, logic variable
| se | *e address, dereference
| ©e |ei@er
| el ler] array indexing
| e.m | e->m member access
| sizeof(t) type size
| fler,...,en) custom function
= =+
e

Figure 16: Syntax of expressions.

Spatial proposition, assertion

Comparison operator

Function specification

Assertion

Heap
Local

Pure proposition

Spatial proposition

Expression

Figure 17: Syntax of user assertions.

S

@

e1d@er
| P s Py

| Pl P

| P] -> P2

| P

| exists x,P

| forall x,P

| plet,...,en)

P

| P ss S

| S1* %

| NERERY

| exists x,§

|]7(61,...,6,1)

> =< |<=]=]!=

F

comparison

conjunction

disjunction

implication

negation

existential quantification
universal quantification
custom predicate

conjunction

separating conjunction
disjunction

existential quantification
custom predicate

(VVI yoeee 7Vn~Spre7Spost)

Figure 18: Syntax of function specification.

H

AvH
Ixy,.., 0. LAPXS
L]

&v=e,L

ei@er

=P |PL AP, |PAVP | P> P
3x.P | Vx.P
plets... en)

°

SI*SZ

e; — ep typet
e; — — typet

pler,...,en)
ZEZ

X

Qe | e1®@er
&ep —m
f(e],...7e,,)

singleton
disjunction

empty

address
comparison
connective
quantification
custom predicate
empty heap
separating conjunction
store
uninitialized store
custom predicate
integer constant
logic variable
arithmetic
member offset
custom function

Figure 19: (Abstract) Syntax of C internal assertions.

Normal form N = H
Heap G,H IX.Pss B
Body B pler,...,)

Figure 20: Syntax of DNF.

and y, respectively. It is more structured and facilitates
symbolic execution more conveniently.

B Transformation To Internal Assertion

In this section, we show how user assertions are trans-
formed into internal assertions.

B.1 Step 1: Normalization

This phase puts an assertion in a sort of disjunctive nor-
mal form (DNF). Such a normal form is defined in Fig-
ure 20. The normalization procedure is described in Fig-
ure 21.

B.2 Step 2: Convert Expressions

In this phase, we convert expressions in user assertions to
expressions in internal assertions, at the same time gener-
ating auxiliary Local and Sep. The procedure is defined
in Figure 22. The judgement V(e,L,S,x) = (¢/,L',S',x')
means that under context L, S, x, the value of e is ¢ and
the context is updated to L', ", x’. 4 is similar, computing
addresses (if valid) instead of values. The conversion is
naturally extended to pure propositions 7 (P) and spatial
propositions 7 (B), replacing each expression e in them
with V(e), which we omit here.

B.3 Step 3: Sanity Check

Our pure propositions P can contain spatial expressions,
so they are not really pure. Consequently, some user
assertions cannot be transformed into internal ones. For
example, the following user assertion is invalid.

foralli, 0<=is&&i<4=>ali] ==

A simple scope checking on internal assertions is
enough to exclude such invalid cases. That is, every logic
variable appearing in S should be bound by existential
variables introduced in exists x,S.

C Full Evaulations

Full test results of previous work and VEP are shown in
Table 4 and Table 5, respectively.

D Case Study : Key_connection

Figure 23 presents the complete Key_connection
program, though only the assertions used to verify
memory safety are shown here. In this program,
connt—conn_list is a linked list of servers to con-
nect to. To describe the memory structure related to this
linked list, we introduce two predicates: ConnListrep
and ConnListseg. These predicates are defined as fol-
lows:

ConnlListrep(x) := x == 0 && emp ||
3 n 1 num mark_v length,
0 <né&&n< 128 && 1l[n] == 0 &&

X — num_packet == num &&

— mark == mark_v &&
x — lengthsofar == length &&
store_char_array (& (x—key), 128, 1) *
ConnListrep(x — next)

X

Connlistseg(x,y) := x ==y && emp ||
3 n 1 num mark_v length,
0 <n&&n<128 && 1[n] == 0 &&
X — num_packet == num &&
X — mark == mark_v &&
x — lengthsofar == length &&
store_char_array (& (x—key), 128, 1) *
ConnListseg(x — next, y)

In this definition, store_char_array corresponds to
chars in Figure 4, representing a character array. This is
purely a recursive definition describing the server list.

E Case Study : Acquire/Release example

Figure 24 presents an example that uses helper functions
for acquiring and releasing resources. In this example,
line 13 invokes the helper function bpf_sk_lookup_udp
to obtain a socket. The success of this operation is
checked at line 17, and if successful, the socket is released
at line 19 using the helper function bpf_sk_release. As
a result, this program maintains kernel-interface compli-
ance level safety.

In this example, the user only needs to provide the
annotations in lines 3 to 5 to successfully verify the pro-
gram. VEP automatically generates the assertions in lines
13-15 and 19-20. Suppose the user omits the null check
for sk at line 16 and directly returns. In that case, VEP
will report an error due to the presence of an unverified

norm(S) = 3x7.Py &sB1,...,3%,.P,ssB,

norm(P) =P norm(p(ei,...,e,)) = p(er,...,e
(P) (pler,sen)) = plers....en) norm(flx,S)=E|x,—xl’.P1&&E1),...,3x,—xn’.Pn&&§,2
norm(S) = Hﬁ.Pl&&E),...,Hx_’n.P,,&&I?n> norm(Sy) = o norm(Sy) = 74
norm(P && S)=3x7. P&&Pl)&&l?f,...,Hﬂ.(P&&P,,)&&E,,) norm(Sy || S2) = HiH>

norm(Sy) = Hy,...,Hy norm(Sz) = Gy,...,Gp
norm(Sy * S2) = merge(H1,G1),...,merge(H1,Gp,),...,merge(H,,Gy)

merge(3x7.Py &&l?f, HH.PQ&&I?E) = 3x1%5.(P1&&P>)&&B1 B

Figure 21: Normalization procedure.

V(z,C) = (z,C) V(v;,C) = (v,C) V(sizeof(t),C) = (sizeof(r),C) V(se,C) = A(e,C)
V(e,C) = (',C) V(e1,C) = (€},C") V(e2,C') = (&,C")
V(Gevc) = (Gelacl) r[/(el ®327C) = (ell @e/ZaC”)
V(e1,C) = (€},C) V(en,Co—1) = (€,,Cp) A(e,C) = (a,L,S,x) aedom(S)
rV(f(ela- .- 7en)7c) = (f(ellv . 76;1)7Cn) rV(e‘,C) = (S(a),L,S,x)

A(e,C) = (a,L,S,x) a ¢ dom(S) v fresh A(+e.C) = V(e.C) Aler162).C) = Vier+er.C)
e

V(e,C) = (v,L,S{a—v},xu{v})

A(e,C) = (¢',C") V(e,C) = (',C) v, € dom(L)

A(e.m,C) = (¢ + offset(m),C") A(e->m,C) = (' + offset(m),C") A(vp,L,S,x) = (L(vp),L,S,x)

vp ¢ dom(L) a fresh
/q(vpaLaer) = (avL{VP = (l},S,XU {(1})

T(P{L0.0) =0 T(B,0)=(B,LSy)
T(HYP&&E)) =3x1, . X, Ve s Ym-L A P *iB; *aedom(S)a — S(a)

T(H)=\/TH

Figure 22: Expression conversion.

0NN AW~

[ST N T NS T NS T N T N N e e e I e T
AN AW~ OOV AW~ OO

#include "bpf.h"

struct connection{
char key[128];
unsigned int num_packet;
unsigned int mark;
unsigned int lengthsofar;
struct connection * next;

i

struct identifier{
int mark;
char name[32];
char pattern[512];
bi

struct conntrack{
int queuenum;
int iden_num;
struct identifier *iden_array;
struct connection *conn_list;
bi

struct connection * get_connection
(struct conntrack * connt, char * key)
/*@ With n0 m0 10 Connlist
Require 0 < n0 && 10[n0] == 0 && n0 < m0 &&
connt — conn_list == Connlist &&
store_char_array(key, m0, 10) *
ConnListrep (Connlist)
Ensure 3 v, __return == v && TT

*/

struct connection * p ;

if (connt == NULL || key == NULL)
return NULL;

p = connt—conn_list;

/*@ Inv
0 < n0 && 10[n0] == 0 && n0 < m0 &&
connt — conn_list == Connlist &&

store_char_array(key, m0, 10) *
ConnListrep(p) * ConnListseg(Connlist, p)

*/
while(p != NULL) {
if (strcmp (p—key , key) == 0)
break;
p = p—next;
}
if (p == NULL)
return NULL;
else
return p;

Figure 23: Annotated Key_connection

memory region store_sock (sk), whose validity is un-
certain. Similarly, if the user fails to release sk at line 18,
VEP will also raise an error at the final return statement.

O 00O W AW —

SEC ("xdp")
int prog(struct xdp_md *ctx)
/*@ Require store_xdp (ctx)

*/

{

Ensure 3 v, __return == v && store_xdp (ctx)

struct bpf_sock_tuple tup;

struct bpf_sock *sk;

if (!check_ipv4_udp(ctx)) return XDP_DROP;

init_sock_tuple(ctx, &tup);

sk = bpf_sk_lookup_udp(ctx, &tup,
sizeof (tup.ipvd), 0, 0);

/*[auto generated]

store_xdp (ctx) * store_sock_tuple(tup) *

store_sock (sk) */

if (!sk) return XDP_DROP;

bpf_sk_release(sk);
/*[auto generated]

store_xdp (ctx) * store_sock_tuple(tup) */
return XDP_PASS;

Figure 24: An example for Acquire/Release by helper
function

Linux verifier

PREVAIL

Programs Code Lines Time(ms) | Memory(KB) | Time(ms) | Memory(KB)
sockex1_kern 29 1.03 4194 2.05 4978
syscall_tp_kern(enter) 38 1.03 4194 3.17 4931
cpustat_kern(frequency) 93 1.13 4190 11.30 6377
cpustat_kern(idle) 116 1.11 4196 23.52 7918
Linux Samples xdp_adjust_tail_kern 47 0.64 4196 6.69 5539
syscall_tp_kern(exit) 35 0.99 4190 3.02 4927
lathist_kern(on) 77 1.09 4144 10.18 6025
trace_event_kern 65 fail - 48.37 6730
tcp_iw_kern 68 0.65 4152 9.82 5664
tep_rwnd_kern 50 0.77 4155 6.69 5404
twomaps 34 fail - 2.43 5056
twotypes 33 fail - 3.80 5278
map_in_map 36 fail - 5.17 5054
stackok 13 1.02 4114 74.67 5279
loop 21 fail - fail -
PREVAIL Samples packet_start_ok 4 1.08 4200 1.19 4942
twostackvars 47 0.53 4140 20.9 5267
packet_access 28 0.58 4153 2.74 5216
bpf2bpf 13 0.51 4154 0.16 4157
dependent_read 13 0.55 4154 fail -
strepy 34 fail - fail -
strncpy 34 1.65 4212 fail -
strcat 44 fail - fail -
strncat 43 fail - fail -
Stringlib strlen 19 fail - fail -
strncmp 31 2.69 4316 fail -
strcmp 32 fail - fail -
memset 28 1.14 5168 39.89 7267
strchr 28 fail - fail -
memchr 28 fail - fail -
badhelpercall 6 reject - reject -
badmapptr 24 reject - reject -
badrelo 20 reject - reject -
ctxoffset 21 reject - reject -
nullmapref 23 reject - reject -
Unsafe Program badhelpelscaHZ 22 re; ect - re; ect -
packet_overflow 14 reject - reject -
wronghelper 20 reject - reject -
mapunderflow 23 reject - reject -
packet_reallocate 22 reject - reject -
Key_connection 63 fail - fail -

Table 4: Time cost and memory usage of samples by Linux verifier and PREVAIL

Programs Assertion| Proof VEP-C VEP-compiler VEP-eBPF
Lines |Lines |Time(ms)Memory(KB)| Time(ms) |Time(ms){Memory(KB)
sockex1_kern 3 1140 | 4.06 5882 0.35 2.53 2284
syscall_tp_kern(enter) 7 2253 | 5.33 6391 0.37 2.57 2396
cpustat_kern(frequency)| 11 8357 | 50.33 15887 2.62 7.89 4292
cpustat_kern(idle) 11 |19390| 158.12 32569 6.09 21.32 7167
Linux Samples xdp_adjust_tail_kern 10 739 4.27 5852 0.32 2.41 2236
syscall_tp_kern(exit) 7 2253 | 5.28 6396 0.35 2.47 2379
lathist_kern(on) 9 4180 | 23.47 18502 2.47 21.69 8034
trace_event_kern 6 7136 | 67.33 18841 1.15 5.79 3353
tcp_iw_kern 6 161 | 12.57 12150 1.75 9.11 4182
tep_rwnd_kern 6 19231 63.88 19154 1.84 8.44 4342
twomaps 2 2310 6.07 7119 0.46 2.77 2521
twotypes 4 9449 | 15.49 8288 0.73 4.40 2665
map_in_map 3 261 297 5995 0.39 2.31 2348
stackok 4 1848 | 4.32 5223 0.19 1.96 2028
loop 8 4042 | 10.02 7682 0.55 2.84 2453
PREVAIL Samplesi— & Start_ok 3 |1245| 2.64 5174 0.21 2.03 2126
twostackvars 12 |18446| 40.23 12422 1.43 3.96 3047
packet_access 3 3669 8.85 7075 0.50 3.42 2659
bpf2bpf 7 13 0.70 4436 0.11 1.76 1932
dependent_read 3 648 2.56 4920 0.19 2.14 2106
strepy 9 6051 | 12.09 8172 0.66 2.67 2510
strncpy 11 4242 | 8.69 7888 0.59 2.61 2557
strcat 17 12820 31.17 11778 1.39 341 2907
strncat 17 14254 36.60 12612 1.16 3.54 2970
Stringlib strlen 9 2035| 5.02 5946 0.29 2.23 2236
strncmp 11 3976 | 8.45 7994 0.54 2.58 2470
strcmp 9 5934 | 14.27 8528 0.76 2.25 2574
memset 11 1925| 3.78 6271 0.35 2.18 2281
strchr 9 2329 | 6.94 6962 0.40 1.66 2463
memchr 9 2551| 7.64 6683 0.42 3.19 2517
badhelpercall 4 reject| 2.82 1618 - - -
badmapptr 3 reject| 3.05 1701 - - -
badrelo 3 reject| 2.60 1575 - - -
ctxoffset 3 reject| 2.70 1436 - - -
Unsafe Program nullmapref 3 reject| 4.38 2275 - - -
badhelpercall2 4 reject| 2.46 1402 - - -
packet_overflow 3 reject| 4.31 2115 - - -
wronghelper 3 reject| 2.73 1652 - - -
mapunderflow 3 reject| 2.78 1781 - - -
packet_reallocate 3 reject| 5.36 2955 - - -
Key_connection 17 5819 | 16.24 8534 0.56 2.48 2440

Table 5: Time cost and memory usage of samples by VEP

	Introduction
	Overall Architecture of VEP
	Two-stage Verification
	Verification Capabilities
	Discussion
	Related Work

	Detailed Design of VEP-C
	Verification Process of VEP-C
	Assertion Language of VEP-C
	Output of VEP-C

	Detailed Design of VEP-compiler
	IR Generation
	Calling Conventions
	Register Allocation
	Frame Layout

	Detailed Design of VEP-eBPF and Proof Check
	Evaluation
	Performance Analysis
	Verification Accuracy
	Annotation Efficiency
	Case Study : Key_Connection

	Future Work
	Conclusion
	Syntax of VEP-C Assertions
	Syntax of User Assertions
	Syntax of Internal Assertions

	Transformation To Internal Assertion
	Step 1: Normalization
	Step 2: Convert Expressions
	Step 3: Sanity Check

	Full Evaulations
	Case Study : Key_connection
	Case Study : Acquire/Release example

